The Troposcatter Propagation Mode and How to Predict Coverage on the VHF/UHF Bands

> Prepared in 2017 for the CSVHF Society Conference, and New Mexico TechFest by KK6MC James R. Duffey < KK6MC@Amsat.org >

What is Troposcatter

- Scattering (not reflection) from inhomogenities (blobs of uneven density) in the troposphere
- Allows propagation beyond normal line-of-sight and diffraction distances
- Aways present, although strength varies considerably
 - 13 to 15 dB
 - Varies with time of day, season of year, weather
- Very dependent on effective radiated power, angle of radiation
- Viable propagation mode from 50MHz (6M) to over 10GHz (3cm)

Troposphere

Troposphere is atmosphere from ground level to about 35,000 feet. It is the region where clouds are formed.

Troposcatter from Inhomengenities

Density Inhomogeneities (Blobs) in Upper Atmosphere

Troposcatter Path Loss from Bray, QST, November 1961

Two Meter Path Loss as a Function of Distance

Two Meter Path Loss as Function of Distance for 50% Reliability

from DIshman QST November 1961

Planning - Path loss capability

```
path loss capability (plc) = effective isotropic radiated power (eirp) + effective receiver
sensitivity (ers)
eirp = (10*log(P)) + Gtrans - transTL
where P = transmitter power, Gtrans is gain of antenna, trasnTL is transmission line loss
ers = -10*log(k*T*B) + Grecv - recvTL - threshold
where kTB = receiver noise power in bandwidth B, Grecv receiver antenna gain, recvTL receiver
transmission line loss
predicted snr = plc - pl
For my 25 watts to the WA5VJB Yagi:
P=25W, Gtrans=10, transTL=1
eirp:23 dBW
For a modest 2M weak signal station: T= 438 K (equivalent to nf=4dB), B=2500 (SSB), Grecv=15dBi,
recvTL=1, threshold=0 (SSB),
ers:-182
-- and the effective path loss capability
plc: 205 dB
```

Typical VHF Station Capability

	Receive Station	Mode	Path Loss Capability (dB)	Distance (miles) for SNR=10
5W HT $^{1/4}$ wave	HT ¹ / ₄ wave	FM	156	15
5W HT $^{1}/_{4}$ wave	Long Yagi, low noise receive	FM	170	30
FT817 3el Yagi	FT817 3 el Yagi	SSB	184	80
FT817 3el Yagi	FT817 3 el Yagi	CW	195	130
IC706 6 el Yagi	TS2000 Long Yagi	SSB	207	250
IC706 6 el Yagi	TS2000 Long Yagi	CW	214	310
TS2000 Long Yagi	TS2000 Long Yagi	SSB	215	270
TS2000 Long Yagi	2dB NF, stacked Yagis	SSB	223	300
KW, Stacked Yagis	2dB NF, stacked Yagis	SSB	236	400

Going from FM to SSB to CW to better antennas increases distance a lot

Two Meter Path Loss as Function of Distance for 50% Reliability

Monday, May 14, 2012

Loss very dependent on takeoff angle – Hills are nice

Troposcatter Loss vs Total Takeoff Angle

Relative path loss increases as frequency increases – offset by increase in antenna capture area

Relative Loss vs Frequency (dB)

QSB is significant on Troposcatter

Source: Crawford, A.B., Hogg. D.C., and Kummer W.H. "Studies in Tropospheric Propagation Beyond the Horizon." The Bell System Technical Journal, vol. 38, no. 5 (September 1959), p. 1119.

Tools to Calculate Path Loss

- There is no first principles theory, all calculations are made with numerical constructs built to match observed data
 - can be big variation in results depending on whose technique you use
- Calculations can be made by hand using troposcatter loss formulas – requires knowing distance to nearest obstruction on each end.
 - Visual Basic <</p>

http://www.bobatkins.com/radio/scatter2.html >

 Computer tools using Longley Rice NBS model have terrain data built in and are much easier to

Calculating Path Loss Capability with SPLAT!

- Path profile and calculated path loss from on line SPLAT! (W5GFE)
- Path loss is for 50% reliability; 50% of the time it will be worse, and 50% of the time it will be better
- Prediction is for ~200 dB path loss
- Made QSO on second (or more?) attempt an hour apart

Radio Mobile On-line Calculations

	painted D	esert to WB2FKO		
Painted Desert DM54 (1)			(2) WB2FKO DM65	
Latitude	35.065411°	Latitude	35.119010°	
Longitude	-109.781570°	Longitude	-106.578817°	
Ground elevation	1757.5 m	Ground elevation	1601.0m	
Antenna height	4.0 m	Antenna height	10.0m	
Azimuth	87.91 TN 77.94 MG°	Azimuth	269.75 TN 261.07 MG°	
Tilt	-1.34°	Tilt	-1.28°	
Radio system			Propagation	
TX power	54.77dBm	Free space loss	124.98dB	
TX line loss	1.00dB	Obstuction loss	64.60dB	
TX antenna gain	11.00dBi	Forest loss	1.00dB	
RX antenna gain	15.00dBi	Urban loss	1.00dB	
RX line loss	1.00dB	Statistical loss	-3.92dB	
RX sensitivity	-120.98dBm	Total path loss	187.65dB	
Performance				
Distance			291.444km	
Precision			145.8 m	
Frequency		146.000 MHz		
Equivalent Isotropically Radiated Power			3000.000 W	
System gain			199.75dB	
Required reliability			50.000 %	
Received Signal			-108.88dBm	
Received Signal			0.81 µV	
Fade Margin			12.10dB	

Using Radio Mobile On line

Create account or log in

Initial Menu

	W1 117	
-76	Welcome kk6mc	
¢	My Settings	
Å	New Site	
Å	My Sites	
¥.	Multiple Sites	
ሻ	New Link	
ሻ	My Links	
•	Multiple Links	
•	New Coverage	
•	My Coverages	
ju)	Multiple Coverages	
 + +	New Antenna type	
⇒	My Antenna types	
⇒	Log Out	

Settings

O My settings	
User Name	kk6mc
Password	
Confirm Password	
Email address jar	nesduffey@comcast.net
Confirm Email jar	nesduffey@comcast.net
Language	nglish ‡
Map background source G	oogleMap ‡
Status	Amateu
Home Name	Base
Home Latitude	0.0000000
Home Longitude	0.0000000
Home zoom	2
Submit mo	odifications
Delete	account

New Site

Submit

A New Site		
	Locate	
atitude	35.06119589	
ongitude	-106.56703949	
Zoom		11
Name	New Site 147	
Elevation (m)	1628.7	
Description		
Group		
	Add to My Sites	

New Link

Radio Mobile	
** New Link	
From: Veterans Memorial to Olath	e CO
From	New Site 147 \$
Antenna height (m above ground)	10
То	W9RM DM58xn +
Antenna height (m above ground)	10
Description	Veterans Memorial to Olathe CO [*]
Frequency (MHz)	146
Tx power (Watts)	100
Tx line loss (dB)	1
Tx antenna gain (dBi)	11
Rx antenna gain (dBi)	18
Rx line loss (dB)	0.5
Rx threshold (µV)	0.05
Required reliability (%)	50
Use land cover	✓
Use two rays	
	Submit
Cancel	

Submit

Radio Mobile		Par/By Roger Coudé VE2DBE		
Add to my links Modify this link Return t	o main menu			
		and the second s		
			MALL A	
		and and a		
		and the second		
		1 L 01 4 00t		
	veterans Memo	rial to Olathe CO*		
New Site 147 (1)			(2) <u>W9RM DM58</u>	
atitude	35.061196°	Latitude	38.561667°	
Longitude	-106.567039°	Longitude	-108.043333°	
Ground elevation	1628.7m	Ground elevation	1763.0m	
Antenna height	10.0 m	Antenna height	10.0m	
Azimuth	341.78 TN 333.31 MG°	Azimuth	160.90 TN 151.43 MG°	
Filt	-1.83°	Tilt	-1.87°	
Radio system			Propagatio	
l'X power	50.00dBm	Free space loss	127.96dB	
TX line loss	1.00 dB	Obstuction loss	80.18dB	
"X antenna gain	11.00dBi	Forest loss	1.00dB	
RX antenna gain	18.00dBi	Urban loss	1.00dB	
RX line loss	0.50dB	Statistical loss	-1.81dB	
RX sensitivity	-133.02dBm	Total path loss	208.33dB	
Performance				
Distance			410.806km	
Precision			205.5 m	
Frequency			146.000MHz	
Equivalent Isotropically Radiated Pow	/er		1000.000 W	
System gain			210.52dB	
Required reliability			50.000 %	
			-130.83dBm	
Received Signal				
Received Signal Received Signal			0.06µV	

You also get a map

Useful References

- Bray, QST, November 1961
- SPLAT!
 - < <u>http://www.qsl.net/kd2bd/splat.html</u> >

On line at: < <u>http://splat.adis.ca</u> >

- RadioMobile
- < <u>http://www.cplus.org/rmw/english1.html</u> >
- Atkins
- < <u>http://www.bobatkins.com/radio/troposcatter.html</u>>
- Rehr
- < <u>http://flarc.net/eme-info/PDF/W3SZ-2.pdf</u> >
- < NMVHF.org > and the NM VHF Society