

The FT8 Revolution

Mike Hasselbeck
WB2FKO

SARA Hamfest
20 October 2018

FT8 is revolutionizing how amateur
radio operators work DX

HF DX is possible
even at the solar minimum

WHAT THIS PRESENTATION IS ABOUT:

How and why FT8 was designed

Why FT8 works so well for weak signal communications

WHAT THIS PRESENTATION IS NOT ABOUT:

How to setup a station for digital operation

How to operate effectively with FT8 (yes, there is a learning curve)

Related software: FT8 Call, JTDX, JTHF, JT Alert, etc

Picking a fight with ops who prefer traditional modes

Wide variety of digital modes in amateur radio

PSK31

QPSK31

AMTOR

PACTOR

RTTY

PACKET

THOR

HELLSCHREIBER

CLOVER

MFSK16

OLIVIA

WSJT-X

Choice strongly depends on what we are trying to do

PSK31 is popular:
Keyboard-to-Keyboard Communication in Real-Time

Phase-shift keying at 31 baud (bits per second)

PC + sound card

Five bit code (baudot). Equivalent to ~ 60 wpm cw

Primarily on HF

Working DX: Want that new grid or country in the log!

Usually don’t have the luxury or even desire to chat

Success if we just exchange callsigns and a report

QRZ?

WSJT-X: Digital protocol for minimum
communication on marginal paths

Fundamental Design Premise:
 Exchange only enough information
 for a minimum QSO

QSL!

FT8 is a sub-mode of WSJT-X
Derived from JT65

 FT8: Franke-Taylor Design, 8-tone FSK

Steve Franke, K9AN Joe Taylor, K1JT

Introduced for Alpha-testing 30 June 2017

Design motivated by 6m Es:

Short duration, weak but steady openings

15 second sequences ⇒ 4x faster QSOs than JT65

4–6 dB less sensitive than JT65

Foundational work for JT65 & FT8:
Compact messages

Reference: Clark and Karn, Proc. CSVHF, 1996

QSO messages can be very efficiently coded

CALLSIGN1 CALLSIGN2 GRID

Tom Clark, K3IO Phil Karn, KA9Q

JT65/FT8 messages are generally not free-form

Greatly reduces the amount of data required

Defines a 72/75 bit message protocol

JT65/FT8 messages are generally not free-form

Greatly reduces the amount of data required

Defines a 72/75 bit message protocol

KG5FHU WB2FKO DM65
This message can be coded into 71 digital bits

Compare: 209 bits in Morse Code (1 dit = 1 bit)

Why are compact messages useful?

1) Make data packets very small

– OR –

2) Add other, very useful data to message

FORWARD ERROR CORRECTION:
The crucial enhancement CW does not have

Modern technology:
Modems
Hard drives
CDs
DVDs
Blue-Ray
Digital TV
Satellites
Deep-space probes
QR codes for phones

Amateur radio:
D-Star
DMR
Fusion
QPSK31
MFSK16
Olivia
WSJT

What is Forward Error Correction?

A: 00
B: 01
C: 10
D: 11

Each character represented

by 2 data bits

EXAMPLE:
Simple 4 character alphabet without FEC

A: 00
B: 01
C: 10
D: 11

Transmit an 8 character string:
C B D A B C A C

Requires 16 data bits:
10 01 11 00 01 10 00 10

A: 00
B: 01
C: 10
D: 11

Transmit an 8 character string:
C B D A B C A C

Requires 16 data bits:
10 01 11 00 01 10 00 10

Communication channels often have noise

A: 00
B: 01
C: 10
D: 11

Transmit an 8 character string:
C B D A B C A C

Requires 16 data bits:
10 01 11 00 01 10 00 10

Some bits may be incorrectly received

2 of 16 bits incorrect:
10 01 11 00 00 00 00 10
Decoded message:
C B D A A A A C

Correct reception requires
100% transmission throughput
C B D A B C A C

87.5% transmission throughput garbles
some of the message
C B D A A A A C

Can message be correctly received
with < 100% throughput?

Solution 1: Send message multiple times

Three transmissions: 48 bits with 87.5% throughput
2 of 16 bits in each TX incorrect

TX1: 10 01 11 00 00 00 00 10
Decoded message:
C B D A A A A C

TX2: 10 01 10 00 11 10 00 10
Decoded message:
C B C A D C A C

TX3: 00 01 11 00 01 10 00 11
Decoded message:
A B D A B C A D

Solution 1: Send message multiple times

Three transmissions: 48 bits with 87.5% throughput
2 of 16 bits in each TX incorrect

TX1: 10 01 11 00 00 00 00 10
Decoded message:
C B D A A A A C

TX2: 10 01 10 00 11 10 00 10
Decoded message:
C B C A D C A C

TX3: 00 01 11 00 01 10 00 11
Decoded message:
A B D A B C A D

5th character ambiguity: A, D, B ?

Solution 2: Send bits multiple times

111 000 000 111 111 111 000 000 000 111 111 000 000 000 111 000

000 = 0; No error
111 = 1; No error
011 = 1; Corrected
101 = 1; Corrected
001 = 0; Corrected

Interpretation of
received data

Triple modular redundancy

1 data bit, 2 redundancy bits: 48 bits total:

Solution 3: Hamming code words
Invented in 1950 at Bell Labs

A: 00010
B: 11001
C: 10110
D: 11101

Each character represented by
5 bits instead of 2 bits

Richard Hamming

Simple example: 2 data bits, 3 parity bits

Transmit same 8 character string only once:
C B D A B C A C

Requires 40 data bits instead of 48 (or 16):
10110 11001 11101 00010 11001 10110 00010 10110

Transmitted signal:
10110 11001 11101 00010 11001 10110 00010 10110

Received signal:
10110 11000 01101 00010 11011 10110 00000 10111

Assume 87.5% throughput: 5 bits are incorrect

What happens at the receiver?
10110 11000 01101 00010 11011 10110 00000 10111

 C ? ? A ? C ? ?

 Five characters are not recognized
Not in the codeword dictionary!

What happens at the receiver?
10110 11000 01101 00010 11011 10110 00000 10111

 C ? ? A ? C ? ?

That’s worse than
with no FEC !

What happens at the receiver?
10110 11000 01101 00010 11011 10110 00000 10111

 C ? ? A ? C ? ?

Not really worse. Now we know
there are errors and could ask
transmitter to re-send.

What happens at the receiver?
10110 11000 01101 00010 11011 10110 00000 10111

 C ? ? A ? C ? ?

The 16-bit message gave
only 2 false decodes BUT
the receiver didn't know it!

What happens at the receiver?
10110 11000 01101 00010 11011 10110 00000 10111

 C ? ? A ? C ? ?

Let the FEC algorithm try to figure out
what isn't initially recognized

A: 00010 XX0X0 3 bits wrong
B: 11001 1100X 1 bit wrong
C: 10110 1XXX0 3 bits wrong
D: 11101 11X0X 2 bits wrong

2nd received character: 11000

Compare it to our dictionary or code book

It's probably a B

A: 00010 0XXXX 4 bits wrong
B: 11001 X1X01 2 bits wrong
C: 10110 XX1XX 4 bits wrong
D: 11101 X1101 1 bit wrong

3rd received character: 01101

Compare it to our dictionary

It's probably a D

A: 00010 XX01X 3 bits wrong
B: 11001 110X1 1 bit wrong
C: 10110 1XX1X 3 bits wrong
D: 11101 11XX1 2 bits wrong

5th received character: 11011

Compare it to our dictionary

It's probably a B

A: 00010 000X0 1 bit wrong
B: 11001 XX00X 3 bits wrong
C: 10110 X0XX0 3 bits wrong
D: 11101 XXX0X 4 bits wrong

7th received character: 00000

Compare it to our dictionary

It's probably an A

A: 00010 X0X1X 3 bits wrong
B: 11001 1XXX1 3 bits wrong
C: 10110 1011X 1 bit wrong
D: 11101 1X1X1 2 bits wrong

8th received character: 10111

Compare it to our dictionary

It's probably a C

Transmitted message:
10110 11001 11101 00010 11001 10110 00010 10110
C B D A B C A C:

Received message, no FEC
C ? ? A ? C ? ?

After FEC decoding
C B D A B C A C

Perfect decode even with 12.5% data loss

EXAMPLE: First two characters won’t decode

10000 00110 11101 00010 11001 10110 00010 10110

This FEC scheme won’t work
if we lose more than 1 bit per character

Solution 1: Ask transmitter to re-send

Solution 2: Add more parity bits*

* as determined by the Shannon Limit

10000 00110 11101 00010 11001 10110 00010 10110

Solution 3: Design decoder to arrange data
 to be read as columns
 instead of rows

1 0 1 0 1 1 0 1
0 0 1 0 1 0 0 0
0 1 1 0 0 1 0 1
0 1 0 1 0 1 1 1
0 0 1 0 1 0 0 0

R
ead dir ection

Write/Transmit direction

FORWARD ERROR CORRECTION in FT8

Each 75 bit message is augmented with
+ 87 Forward Error Correction bits (Low Density Parity Check)

+ 12 Cyclical Redundancy Check bits
= 174 bits total

50% of the message length is for FEC
 using LDPC

Dr Robert Gallagher
Inventor of the LDPC

in 1960

HOW TONES GENERATE A DIGITAL MESSAGE

8 FSK TONES
TONE 0: 000
TONE 1: 001
TONE 2: 010
TONE 3: 011
TONE 4: 100
TONE 5: 101
TONE 6: 110
TONE 7: 111

Example: 12-bit message

1 0 0 1 1 1 0 0 0 1 1 0

TONE 4 TONE 7 TONE 0 TONE 6

Alphabet
A: 00
B: 01
C: 10
D: 11

C B D A B C

CBDABC is sent as a
TONE SEQUENCE: 4,7,0,6

FT8 TONES GENERATE A DIGITAL MESSAGE

174 bits per FT8 message*
 3 bits per TONE
= 58 TONES SENT per FT8 message

*174 bits = 75 data + 87 FEC + 12 CRC

TIME SYNCHRONIZATION

PSK31 and other digital modes can be sent and
decoded randomly

WSJT modes gain additional sensitivity by requiring
tight time-synch of the stations

Lock the 2 computers to a reference clock

TIME SYNCHRONIZATION

Computer Internet synch only gets in the ballpark

JT65 decoder requires an accuracy < 0.03 seconds

FT8 decoder requires an accuracy < 0.02 seconds

The message supplies its own synch signal

An FT8 message has 79 time intervals

Each interval is 0.16 seconds

Total message duration: 12.64 seconds

58 intervals allotted for the message + FEC + CRC

21 intervals allotted for SYNCH TONES

TIME SYNCHRONIZATION IN FT8

12.64 seconds

174-bit message goes in here

7 tone sequence* at start, middle, and end of transmission

* 7x7 Costas Array: 7 frequencies x 7 time steps

Dr John P Costas

WHAT THE HECK IS A
COSTAS ARRAY ???

AND WHY SHOULD
I CARE ABOUT IT?

A talk is in preparation for:
NEW MEXICO TECHFEST

February 2019, Albuquerque

 FT8 WATERFALL DISPLAY

World Wide
VHF Contest
July 2018

VFO: 50.313 MHz

Upper sideband

50 Hz signals in ~2200 Hz receiver bandwidth

AUDIO FREQUENCY

15 sec}

T
IM

E

 Simultaneous decodes of multiple signals in waterfall display

 Relative strength of decoded signals

Time offset between stations
The FT8 decoder can correct up to ± 2.5 seconds

Audio baseline frequency
Each signal requires 50 Hz bandwidth

Time between FT8 transmissions is ~ 2 seconds
Faster than most ops can react!
Most use the Auto Sequence feature to send next message

No need to
constantly fiddle
with VFO

30+ different stations
can be simultaneously decoded
in the receiver bandwidth

Decodes possible even when
signals partially overlap

1.840
3.573
7.074
10.136
14.074

18.100
21.074
24.915
28.074
50.313

FT8 Frequencies

Hardware cost to get
on the digital modes

<

[I assume everyone has a computer]

$$

Why FT8 is better than CW
for working DX

REASON 1:

FT8 is ~ 8 dB more sensitive than CW at 12 wpm

Communication possible with signals that are inaudible

REASON 2:

False character decodes extremely unlikely:
FT8 is All-or-Nothing

CW ops adept at filling-in missing characters

QSL???

REASON 3:

Multiple streams of real-time decoded signals

Most CW ops can only reliably deal with
one signal

REASON 4:

FT8 learning curve not as steep as CW

Many ops have poor or no CW skills

Chasing DX available to the hearing impaired

REASON 5:

QRM and congestion dramatically reduced

Many stations comfortably spread out over ~2500 Hz

A station picks out callers and works at discretion

REASON 5 (continued):

Two good CW ops can complete a QSO far faster
than the minimum time for FT8: 45 seconds

...but they first have to find each other

...and they likely have to fight through QRM

Is FT8 more time-efficient in the aggregate?

REASON 5 (continued):

FT8 DXpedition Mode: Fox and Hounds

Many stations (Hounds) calling single, rare DX (Fox)

Pre-arranged frequency

Fox can work multiple
hounds simultaneously

Run rates approaching
1000/hour on multiple
bands

REASON 5 (continued):

AA7A and other experienced DXers provided guidance
for Fox-Hound development

1) FT8 likely to displace RTTY
in HF digital contests

2) FT8 will be preferred mode
on future DXpeditions

Ned Stearns, AA7A

REASON 6:

There is widespread adoption and momentum

The empirical evidence is mounting: FT8 makes working DX easier!

WSJT-X can automatically upload FT8 spots to pskreporter.info

15 minute window snapshot of 6-meters. 8 July 2018

Major update of WSJT-X was released on 17 October 2018

Data payload size increase from 75 to 77 bits in FT8 and MSK144

Accommodates VHF contest rover suffix: /R

Auto-sequencing between contest and non-contest stations

Field Day contest exchanges (example: 2B NM)

ARRL RTTY Roundup contest exchanges (599)

75 and 77 bit format are not compatible

Alerts for new DXCC, new grid, etc

~ 1 dB more sensitivity

“If a computer decodes it,
it's not real ham radio!”

“If a computer decodes it,
it's not real ham radio!”

To each his own.

Considerable skill required
to use FT8 effectively.

Get better with practice.

FT8 or something like it is here to stay

DXers and Contesters will do one of the following:

1) Stick with traditional modes

2) Move entirely to digital

3) Use a combination of analog and digital to best advantage

“It's difficult to make predictions,
especially about the future.”

– Robert S. Petersen

